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PREFACE
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during the period 15 May 1984 to 31 July 1984 by the author, Dr. Robert R.

Kallman. while visiting the Armament Laboratory as a Southeastern Center for .

Electrical Engineering Education (SCEEE) Postdoctoral Fellow.

The author would like to thank the Air Force Systems Command, the Air

Force Office of Scientific Research. and SCEEE for providing him with the

opportunity to spend a very worthwhile and interesting 10 weeks at the

Armament Laboratory. The author would like to acknowledge in particular the

Electro-Optical Terminal Guidance Branch and the Image Processing Laboratory
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SECTION I 

-

INTRODUCTION

The work reported in this 
document is the result of a mathematical 

,.'-

approach to an engineering problem. The work is described in mathematical

language. The purpose of this introduction is to describe the engineering

problem being attacked, thus explaining the motivation for the mathematical

work, and to define enough terms so that the reader has the proper mindset to

appreciate what is reported herein.

A large body of work has been dedicated to shape recognizing or object

identification. One particular approach to this problem is optical

correlation. This is usually attempted with a discriminant function,

implemented in a holographic optical filter, which contains sufficient

information about the object so that an image of the object can be processed

by the filter. If the object sought is in the filter input plane, a large

correlation peak should occur in the filter output plane. An excellent

summary of the how this can be accomplished with holography is found in the

survey article by Casasent and Caulfield, Reference 1.

Practical problems which appear include how to design the discriminant

function to contain sufficient information, how to implement the discriminant

function to make a tangible filter, and how to enhance filter efficiency. The

discriminant function design is in many respects a mathematical problem and is

addressed in this report.

In the approach relevant to this report, the discriminant function is
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constructed by judiciously adding information from selected aspects of the

object of interest, thus creating the SDF, Reference 2. This report addresses

how to best choose the information used to create the SDF.

The input data is imagery. The format for the imagery is usually a 512

pixel by 512 pixel scene. In order to use this information, it is convenient

to break out the 512 by 512 f 262,144 pixels into a string of integers on a

magnetic tape. Mathematically, therefore, one can think of a scene as a

vector with 262,144 components. Ideas such as vector inner products then

follow naturally.

As filters are designed, criteria must be established by which the

* quality of the filters can be measured. One of the unique aspects of the work

reported herein is the fact that the filter performance is quantified.

Tdsting each filter can be done optically, but for this effort it was

much more efficient to simulate all the optics on a digital computer. This

was done in the E-O Terminal Guidance Branch Image Processing Laboratory,

using its VAX 11-750.

A glossary is included in the report.

2
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SECTION II

OPTICAL FILTERING AND SDF BASICS

Imagine a two-dimensional infrared Image f(xl,x2 ) of a scene which

contains an object of interest. Consider the following operations on f. Map

f(xlx ) to its Fourier transform F(f)(k ,k 2), multiply by the Fourier

transform of a suitable function F(h )(k1,k2 ), take the inverse Fourier

transform of the product to obtain the convolution (f h )(xl,x 2 ), and measure

2
the magnitude If h I (x1x 2) Here, h (yl,Y2) h(-yl, -Y 2) so (f h )(xl1, X2 ) -

may be viewed as the inner product of f and the translate of h by (-x ,-X1 2

All of these operations can be carried out almost instantaneously, for Fourier

transforms and their inverses can be carried out by lenses, and the important

multiplication and filtering step can be carried out by passing the light wave

F(f) through a suitable hologram transparency, Reference 1, incorporating

information about F(h*). If h, the synthetic discriminant function or SDF, is

suitably constructed and scaled, the objects of interest should be centered at

the points (xl ,x2 ) such that

I h*i 'x 2= 1. (1) '-.

In reality f will probably be a 512 by 512 pixel image, and h will be 32

by 32 pixels in size. One can think of the filter as operating by

instantaneously placing translates of h all over f, taking the corresponding

inner products, and Indicting those places where the magnitude of the Inner

product is large. These should be the places where objects of interest are

located. This, in a very rough form, is the optical matched filtering process

via an SDF.

3
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The correct construction of h is obviously of the utmost importance if

this scheme is to be successful. An early attempt along these lines was made

by simply taking a number of transparencies of the object of interest, at a

variety of aspects and angles, and overlaying them, Reference 3. Hence, in

these early attempts one started with m images fl ... f and let h = f "

- + f This is a good idea if f . . . . . f are mutually orthogonal, but in
m -- m

general they are not.

In the past few years a generalization of this original approach was

suggested by Caulfield and Maloney, Reference 4, and by Hester, Casasent. et

al., References 5 - 10, who proposed to take a number of pictures f ..... fm of

the object interest and to choose h to be a suitable linear combination of

fl ... f " So in theory

h = a1f 1 + + amfm  (2)

for some suitable choice of constants a I .. am. Thinking of the f

(1 < I m) as vectors in some high dimensional (e.g., for images that are 512

pixels by 512 pixels, the dimension of the space is 262,144) Euclidean space.

h is expressed as a linear combination of the vectors f ..... f To determine

the ai (1 i m), make the ad hoc assumption that <h,f.> 1 (1 < J m) and

use the bilinearity of the inner project to obtain

I = <h f > = a <f f > + ... + a <f ,f.>, (3)
1 V~ m m

where <.,.> denotes the inner project between vectors. If the m x m matrix

(<f ,f.>) is nonsingular, as it most probably is for quite different images

.. f , then there is a unique choice for the a. (1 < I < m). and they canSm 1

/

be determined easily by solving a system of m equations in m unknowns.

4
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The notion has persisted that one should not use all of the original

images fl ... ,f to manufacture the SDF h, but instead should use a subset p

(p less than a) of them, usually selected by some sort of orthogonalization

procedure. Reasons given for not using all of the images include problems

with correlating on clutter. Given that this rather dubious notion has some

merit, the question remains to carefully formulate how to choose the p best

from all m images.

4 5
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SECTION III

OBJECTIVES

The objective of the author during the SCEEE fellowship was to design

from scratch a variety of programs to generate the best possible SDF's from a

training set of images and to compare the SDF's to each other. The training

set (a set of 36 images to be used to construct the SDF's) consisted of 512 by

512 pixel 8-bit infrared tank images, but pixel values outside of rows 200 to

400 inclusive were all zero. These images were dirty, in the sense that they

did not consist of tanks in a zero background, as would be desired, but were

images with a very bright background included. The images had been previously

edge-enhanced and biased. Two typical members of the tank imagery with the

background removed are shown in Figure 1. An aspect of one type of SDF (CSDF1

- c.f. the next section) made from this training set is shown in Figure 2.

The training set images were furnished on a computer magnetic tape, each image

2
consisting of a string of 512 = 262,144 integers (each integer with a value

between 0 and 255), representing intensity levels at each pixel of the image.

The guiding principle throughout the effort was that notions such as good or

best be determined by concrete numerical criteria. In general, the programs

try to drive a least squares error down to 0. The computing was done on a

VAX 750/VMS 3.5 in the E-O Terminal Guidance Branch Image Processing

Laboratory.

6
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Figure 1. Two Tanks in the Training Set
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Figure 2. An SDF
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SECTION IV

THE PROGRAMS AND NUMERICAL RESULTS

Let fl ..... f36 be the tank images, thought of as vectors in a high

dimensional (5122 - 262,144) Euclidean space. The following concepts and

programs, with minor modifications, apply to any number of images, not just

36, and of any size, not just 512 by 512. In all of the calculations it

fortuitously turns out that the only thing one really needs to know about the

f's is the symmetric 36 by 36 matrix (<fI'f >), which should be calculated

and stored first. As a measure of error made by a potential SDF h, the least

squares error was chosen:

LSE(h) = I<h,f> - 1 12 + I<hf> 112 + + (<h 3> - 112 (4)

This procedure is extremely plausible, for such a measure of error has proven

useful over the past 200 years in astronomy and statistics.

The following is a list of some of the SDF's calculated, giving their

method of calculation and the least squares error for each. They are named

and numbered in the order in which they were calculated.

SDFl: This is the theoretically perfect SDF and is a linear combination

of all 36 tank images. So SDFl = a I f + a2 f2 + ... + a 36f 36 for some choice

of constants a1 ..... a36 The a 's must satisfy the 36 equations

al<fl,f > + a2<f f > + + a <f f> , (5)
1 1 2 2' i 36 36' 1

for I between 1 and 36. They are easily calculated by Gaussian elimination.

The resulting LSE(SDFI) = 0.0.

SDF2: This SDF is a linear combination of 6 tank images. It was

%.



* calculated by exhaustively checking all (36 choose 6) = 1.947,792 subsets of

the 36 tank images, and for each fixed subset of 6, calculating that linear

combination which makes the LSE as small as possible. It is easy to check

that LSE(h) is a convex function of h, so a local minimum for LSE(h) is a

global minimum for LSE(h). If the f are independent vectors and h Is

restricted to be a linear combination of them, it is easy to check that LSE(h)

becomes uniformly unbounded as Ilhll increases, so a global minimum for LSE(h)

exists. Suppose g, ... g6 is a subcollection of 6 out of the 36 tank images.

--.. We would like to find numbers a1 ,. .. a6 so that h = a g1 + ... + a6g6

minimizes LSE(h) over all possible choices of the ai. The above reasoning

indicates that a minimum exists and Is assumed when the partial derivative of

LSE(h) with respect to each a1 is 0. Doing this for each a1 gives us 6 linear

equations which must be satisfied. They are

m a ... + Mia = b1 ,  (6)

where

ml =<g.fl><fl.g> +<gilf2><f 2 ,g > ... <gI f36 ><f 36 .g > (7)

and

b =<glfl> + <gf> + ... + < f (8)
Ii 1 i' 2 1' 36>*

Given the ais and bi s as above, a little algebra shows that

LSE(h) = 36 - a b - ... - a6 b 6 . (9)

So the program to compute SDF2 proceeds as follows: select 6 out of the 36

tank Images gl.....g 6, find a1 ,....a 6 by solving one set of 6 equations in 6

unknowns, and compute 36 - a bI  - - a6 b Select that subset of 6 which

makes this last number as small as possible, and manufacture SDF2 from them by

computing alg1  + ... + a6g6. The images selected by SDF2 were 4. 12. 16. 24,

29, and 32. The resulting LSE(SDF2) = 0.061511.

10
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SDF3: This SDF is a linear combination of 6 tank images. It was

calculated in a step-by-step orthogonallzation procedure from SDF1. Let g1 be

that tank image so that the orthogonal projection of SDF1 onto the line

spanned by g1 is largest. Take the orthogonal projection of SDF1 and of

fl .... f onto the orthocomplement of g, to obtain SDF1 and fl',...,f3'
1 36 136

(only 35 of which are now nonzero). and repeat the process 5 more times. Keep

track of the index chosen each time to get the 6 desired original images

g1 .... g6  The calculations are easy, for g1 is that image f so that angle

between SDF1 and f is as small as possible. That is, gl is that fl so that

I<SDFIf >I/IISDF1 *lifjI (10)

is as large as possible. Once gl is chosen, the iteration is simple for

<fitfjc>  = <flf > -<fl 2, (>1) .g,'r
i J' 1

and

<SDPl,f '> = <SDF1,f I> - <SDFl,gl><fgl>/Jlglll2 (12)

So repetition is easy. The images selected, in the order in which they were

chosen, are 17, 12, 4, 29, 16, and 24. SDF3 is then that linear combination

of these images which minimizes the LSE. The resulting LSE(SDF3) = 0.085728.

SDF3A: This SDF is a linear combination of 6 tank images. The choice of

the images is done in the same manner as was done for SDF3, so the images are

the same. However. SDF3A was chosen to be the theoretically perfect SDF on

these 6 images. It is simple to check that SDF3A is the orthogonal projection

of SDF1 onto the subspace spanned by the 6 selected Images. LSE(SDF3A)

0.271316.

SDF4: This SDF is a linear combination of 6 tank images. To find the

images, an exhaustive search of all (36 choose 6) = 1.947,792 subsets of 6

-N



tank images is made. The subset of 6 chosen Is that subset such that the

orthogonal projection of the theoretically perfect SDF1 onto their span is as

large as possible. As in SDF3A. this projection Is simple to calculate, for

it coincides with the theoretically perfect SDF made from the 6 working

images. SDF4 is then that linear combination of the images chosen which

minimizes the LSE. The images chosen were 4, 12, 16, 17, 24, and 29. the same

images chosen by SDF3. This is a fluke (c.f. CSDF3 and CSDF4, to be discussed

later). LSE(SDF4) = 0.385728.

SDF4A: SDF4A stands in the same relation to SDF4 as SDF3A does to SDF3.

LSE(SDF4A) = 0.271316.

SDF5: This SDF was calculated in the same manner as was SDF2, except that

SDF5 is a linear combination of 5 images. The images chosen were 4, 12, 17,

18, and 29. Notice that the best 5 images are not a subset of the best 6

images. LSEJSDF5) = 0.080739.

SDF6: This SDF was calculated in the same manner as were SDF2 and SDF5,

except that SDF6 is a linear combination of 4 images. The images chosen were

4, 12, 17, and 29. LSE(SDF6) = 0.103963.

SDF7: This SDF is a linear combination of 6 tank images. They are chosen

in a step-by-step orthogonalization procedure. Roughly speaking, the first

image chosen is that one which contains as much information as possible about

all of the other images. The numerical measure for this information is taken

to be the sum of the squares of the cosines of the angles between all of the

images. So the first image chosen, g1l is that image fi. so that

<filfl>/fill . liflil+ .. + <f' 1f3 6>
2 /Il 1

2 .[if 36iJ2  (13)

is as large as possible. All vectors are now projected onto the

12
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orthocomplement of gl' as in the calculation of SDF3, and the process is

repeated 5 more times. The images selected, in the order in which they were

chosen, are 16, 28, 6, 22, 11, and 36. LSE(SDF7) = 0.258666.

SDF7A: SDF7A stands in the same relation to SDF7 as SDF3A does to SDF3.

LSE(SDF7A) = 0.753411.

SDF8: This SDF stands in the same relation to SDF7 as SDF4 does to SDF3.

This was not run, for the required computation time was estimated to exceed

more than 50 hours of CPU time.

SDF8A: SDF8A stands in the same relation to SDF8 as SDF3A does to SDF3.

It was not run for the same reason that SDF8 was not run.

The results of the above SDF fabrications are tabulated in Table 1.

Suppose one chose to make an SDF from the images 1, 2, 5, 16, 19, and 36.

The very best SDF that can be made with these images has LSE = 0.183932. If

one took these same 6 images and took the orthogonal projection of SDF1 onto

their span, and used this orthogonal projection as an SDF, the resulting

LSE = 0.247391.

Some concern was expressed that the SDF's might be correlating on the

clutter in the background and not on the tanks themselves. For this reason,

and because working with 512 by 512 images consumed inordinate amounts of CPU

time, the tank images were now extracted from the background and placed into

256 by 256 arrays, using DeAnza image processing equipment. All previous

calculations were performed on this new data. The results are summarized in

Table 2. In general, CSDF- was manufactured in exactly the same manner as

SDF-, except that the clean images were used instead of the dirty images.

Figure 2 is a picture of the larger pixels in a biased version of CSDF1 -

biased to make all of its entries nonnegative.

13
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TABLE 1. SUMARY OF THE SDF CALCULATIONS

Technique Images chosen LSE

SDF1 Linear combinations of All 36 0.0
all 36 Images.

SDF2 Calculate 36 choose 6. 4.12,16,24,29,32 0.061511

SDF3 Calculate 36 chose 6, 17,12,4,29,16,24 0.085728 .
but choose each of the 6
according to maximum value
of I<SDF1.ti>I/I ISDF1I1111f11ii.

SDF3A Same as SDF3, but SDF3A 17,12.4,29,16,24 0.271316
is chosen to be the
theoretically perfect SDF
on the 6 chosen Images.

SDF4 Calculate 36 chose 8, 4,12,16,17,24,29 0.085728
choose to maximize the
orthogonal projection of
SDF1 onto their span.

SDF4A 4,12,16,17,24,29 0.271316

SD5 Cluae3 hoe5.41,71,90003

SDF5 Calculate 36 choose 5. 4,12,17,129 0.10039

SDF7 16.28.6.22,11.36 0.258666

SDF7A 16,28,6,22,11,36 0.753411

*SDF8 Not Run

SDF8A Not Run

14
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TABLE 2. SIIMARY OF THE CSDF CALCULATIONS

Images chosen LSE

CSDF1 This SDF is a linear combination of all 36 0.0

clean tank images.

CSDF2 14, 16. 24, 29, 32, and 33 0.870515

CSDF3 17, 16, 33, 14, 32, and 12 1.289280

CSDF3A 17, 16, 33, 14, 32, and 12 2.731533

CSDF4 12, 14, 16, 17, 31, and 33 1.414930
(Note that the images used to manufacture
CSDF4 do not coincide with the images used
to manufacture CSDF3.)

CSDF4A 12. 14, 16, 17, 31, and 33 2.160517

CSDF5 14, 17, 24, 29, and 32 1.046511

CSDF6 12, 17, 29, and 31 1.235655

CSDF7 31, 28, 17, 24, 1, and 10 1.420816

CSDF7A 31, 28, 17, 24, 1, and 10 6.821821
(The lesson to be learned from this
computation is that given a collection of
images, one should do the best job one can
in manufacturing an SDF from them.)

CSDF8 not computed

CSDF8A not computed

15
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SECTION V

-i CONCLUSIONS AND RECOMMENDATIONS

The numbers in Tables 1 and 2 speak for themselves. Assume that

" minimizing least squares errors is a reasonable approach to quantifying the

goodness of an SDF, and suppose that it is desired to make an SDF out of some

small subset of all the images, no matter how dubious this concept may seem.

The computations summarized in Tables 1 and 2 strongly suggest that a least

squares choice and manufacture of an SDF on 5 Images always does better than

any orthogonalization procedure on 6 images (and usually much better), and

that a least squares choice and manufacture of an SDF on 4 images usually does

better than most orthogonalization procedures on 6 images (and sometimes much

better). They also strongly suggest that the worst orthogonalization

procedure is the one which tries to find 6 images which contain the most

information about the other images and then take one's SDF to be the

theoretically perfect SDF manufactured from these 6 images. It is doubtful

that the time-consuming computation of SDF8, SDF8A, CSDF8, or CSDF8A would

change these empirical conclusions.

While the ideas described to pick the best p out of m images to

manufacture an SDF work fairly well if p and m are not too large, they will

not work in a practical sense if m = 100 and p = 10 say, for then to calculate

the analogue of SDF2 would involve finding solutions to (100 choose 10),

13around 1.731 x 10 , sets of 10 equations in 10 unknowns, a very large task

indeed. There might be fairly short computational procedures for finding

16
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results c1se to the theoretically best. Perhaps the random selection and

testing of 10 scenes at a time, combined with some sort of gradient technique,

would work fairly well.

One can generalize the LSE estimator by replacing each summand by

wI.I<h,fi> V >1>
2. Think of wi as a weight. Usually vI will take on the

value 0 or 1, but it can be any value one desires. This should have some uses

and should be tested in an appropriate setting.

The numerical experiments described In Section IV should be tried on

training sets of images which have been edge-enhanced and then

energy-normalized. Recall that edge-enhancement normally involves starting

with an image f, mapping f to its Fourier transform F(f). deleting a suitable

disk containing the origin from F(f), and mapping the result back to image

space by an inverse Fourier transform. Most practitioners in image processing '

insist on this. The simple example usually given is that if this is not done,

then any (uniformly filled in) circle would correlate quite well with a

(uniformly filled in) square of roughly the same size, even though they are

quite different objects. This process also has a considerable technical

advantage, for if an image f has already been edge-enhanced as above, then

F(f) vanishes at (0,0) - i.e., the integral of f over R2 vanishes. Notice

that If an SDF h is made up of a linear combination of such images, it too has

the same property. Furthermore, any biasing done to h then does not change

its correlations with any zero mean image. To see this, recall that a biasing

of h involves replacing h by h + h', where h' is a vector all of whose

components have the same constant value, say c. But if g is any zero mean

image, then <(h + h'),g> = <hg> + <h',g> = <h.g>, for <h'.g> = 0 since it is

17



equal to c times the sum of the pixel values in g. Notice that grave errors

may be made by blithely biasing SDF's without taking into consideration the

mean of g, for then <h',g> may be quite large. There is a subtle but

potentially very serious problem in this circle of ideas. Since the SDF will

be made from edge-enhanced images, 32 by 32 pixels in size, it will be looking

for edge-enhanced images, 32 by 32 pixels in size. But an edge-enhanced 512

by 512 image does not have in general each 32 by 32 subscene edge-enhanced, in

the sense that the sum of the pixel values in this subscene equals 0. For

suppose f is an image such that F(f) = 0 in a disk about the origin in Fourier

transform space. Let B be a square box in image space and let I be its

characteristic function; i.e., I is 1 at points in the box and is 0 at points
B

outside the box. If fI were edge-enhanced, then F(fIB)(0.O) = 0. But
BB

F(fIB)(OO) is the integral of f over B, which certainly may be nonzero even

if the integral of f over all of R2 is 0. For a concrete but somewhat

artifical example of this, suppose F(f) equals F(IB) outside of the deleted

disk. Then F(fIB)(0,O) = (F(f)*F(IB))(O,O) = <F(f),F(f)>, a positive number.

This computation does show that the more the original scene is edge-enhanced.

the smaller is F(fIB)(OO), but how much edge-enhancement is enough to avoid

serious errors in the correlation process? These errors might be especially

pronounced if one is using a biased SDF.

The dirty tank images had been edge-enhanced as above and then biased, so

that all their entries were nonnegative, and then discretized into 256 equal

*. parts - hence the bit streams which appeared on the data tape. One way to

pcome close to recapturing the original edge-enhanced images would be to take

the dirty images, compute the average pixel value over all pixels between rows

18
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200 to 400 inclusive, and subtract this average pixel value from the same

pixels. But then the DeAnza image processing equipment could not have been

used to outline the images and toss out the clutter in the background. A

somewhat inexact but homefully fairly reasonable way out of this conundrum is

to take each of the clean images, compute the average nonzero pixel value, and

subtract this average from each of the nonzero pixels, leaving those pixels

with 0 values unaltered.

Recall that energy-normalization is equivalent to replacing each f by

f/Jf 1 I. many practitioners in image processing insist on this. The usual

reason given is to reduce the climatic effects in which the images are

located. There are at least two reasons why this practice should be done with

a certain amount of caution. Since the SDF will be made from

energy-normalized images, 32 by 32 pixels in size, it will be looking for

energy-normalized images, 32 by 32 pixels in size. But an energy-normalized

512 by 512 image certainly does not, in general, have each 32 by 32 subscene

proportionally energy-normalized. If the object sought is the brightest

object in the 512 by 512 scene, then energy-normalizing the entire image will

leave the object subscene more than proportionally energy-normalized, and no

harm will result if one is searching for a correlation peak. But if there is

a much brighter object, say a fire, in the upper left hand corner of the

image, and the object sought is in the lower right hand corner, then

energy-normalizing the entire scene perhaps will make the image of the object

sought so faint as to be useless. Furthermore, the Schwarz inequality implies

that the SDF will have the largest inner product with unit vectors tr:aV do not

look like the objects sought, but instead look like the SDF itself. This

19
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difference might be quite pronounced. For the SDF process to work, without

further processing, one must make an act of faith that there are no real

objects which look more like the SDF than the sought for images themselves.

The training set images should first be edge-enhanced, and then

energy-normalized. Note that simple examples show that edge-enhancing and

energy-normalizing are not commutative operations. For example, suppose an

image in its right half is uniformly bright with fuzzy edges and contains a

faint object with sharp edges in Its left half. First energy-normalizing and

then edge-enhancing would destroy the left hand object and leave an empty

scene, while first edge-enhancing and then energy-normalizing would leave a

sharp image of the object on the left and nothing on the right.

The author knows of no scientifically unimpeachable reason why the

theoretically perfect SDF should not be used, instead of one made from a small

number of pictures, no matter how they are chosen. At first glance it seems

implausible that one can do a better job by throwing away information.

Perhaps repeating the experiments of Section IV on edge-enhanced and then

energy-normalized training sets will shed light on this important issue.

Even if SDF's made from a small number of images have lower correlation

with clutter, there still might be several ways to enhance the theoretically

*perfect SDF. Notice, for instance, that the number of theoretically perfect

SDF's is enormous. If h Is a theoretically perfect SDF (i.e., if <h.f > = 1,

j ! I m), then one can add to h any vector which is in the orthocomplement

of the f 's and still obtain another theoretically perfect SDF. Furthermore,

they all arise in this manner. So if the f 's are d by d images, then the set

of theoretically perfect SDF's is a hyperplane in Rd of dimension d2 M.

This gives one hope that superior SDF's exist.

20
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GLOSSARY OF TERMINOLOGY

E- A technique used to reduce the low spatial frequencies in an

Image, so that only high spatial frequencies (small objects and edges of large

objects) remain in the image. This Is discussed at some length in Section V.

Energy-Normalize - A technique used to adjust the total energy in an image to .-

some fixed value, usually 1. This is discussed at some length in Section V.

Vector Space- In this paper only concrete vector spaces over the reals are

needed, i.e., only Rn, the set of ordered n-tuples of real numbers. A typical

vector is of the form a = (a1, .. an) where each a. is a real number. Here n

may be much larger than 2 or 3.

nConvex Function - A real valued function f on R is said to be convex If

f(ta + (I - t)b) < tf(a) + (1 - t)f(b) for all vectors a - (al .... a ) and b =
1 n

(bI .... ) i n and all real numbers 0 t < I. A convex function has the
n

property that a local minimum is a global minimum.

Inner Product - If a = (a1,... ,an ) and b = (b ... ,bn ) are two vectors, thenn 1n

their inner product, <a,b>, is defined to be <ab> = a b + . + an bn

21

* .b * *- *



L.
L

Length of a Vector - If a = (a1 ....an) is a vector, its length, 11all[ is

1/2 IE
defined to be lal( <a,a>1/2

Angle Between Two Vectors - If a = (a1 .... a ) and b = (b1 .... b ) are two

nonzero vectors, the angle between them is defined to be the unique angle 9

between 0 and 2! which satisfies <a,b> = iallIlbIl cos(G). The Schwarz

inequality guarantees that 9 exists.

Orthogonal Vectors - In view of the previous definition, it is natural to say

that two vectors a = (a ....a n ) and b = (b1 ... .b n ) are orthogonal if the

angle between them is n/2, i.e., if <ab> 0.

Orthocomnlement - If S is any nonempty collection of vectors, then the

orthocomplement of S, denoted SJ, is the set of all vectors which are

.1. northogonal to every vector in S. S is always a linear subspace of R

Orthozonal Proiection - If S is any linear subspace of Rn, then the orthogonal

projection onto S is the operator PS which carries any vector a to P s(a), that

unique element in S which is closest to a. Ps(a) always exists and PS is a

linear operator.

Synthetic Discriminant Function (SDF)- See Section II for a detailed

description of this object.

2'I
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